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Peptide hormones are powerful regulators of various biological
processes. To guarantee continuous availability and function, pep-
tide hormone secretion must be tightly coupled to its biosynthesis.
A simple but efficient way to provide such regulation is through
an autocrine feedback mechanism in which the secreted hormone
is “sensed” by its respective receptor and initiates synthesis at the
level of transcription and/or translation. Such a secretion–biosynthesis
coupling has been demonstrated for insulin; however, because of
insulin’s unique role as the sole blood glucose-decreasing peptide
hormone, this coupling is considered an exception rather than a
more generally used mechanism. Here we provide evidence of a
secretion–biosynthesis coupling for glucagon, one of several pep-
tide hormones that increase blood glucose levels. We show that
glucagon, secreted by the pancreatic α cell, up-regulates the expres-
sion of its own gene by signaling through the glucagon receptor, PKC,
and PKA, supporting the more general applicability of an autocrine
feedback mechanism in regulation of peptide hormone synthesis.

gene expression | signal transduction

Peptide hormones are powerful regulators of various biological
processes, including gene expression, metabolism, cell cycle,

motility, and apoptosis. To guarantee continuous availability of
the hormone and thereby its function, hormone secretion must
be tightly coupled to its biosynthesis. A simple but efficient way to
provide such regulation is through an autocrine feedback mech-
anism in which the secreted hormone is “sensed” by its respective
receptor and initiates synthesis at the level of transcription and/or
translation. We and others have described such an autocrine feed-
back mechanism for the peptide hormone insulin in both rodent
and human pancreatic β cells (1–11). After exocytosis of insulin,
a portion of the secreted insulin binds to A-type insulin receptors
and, by signaling via PI3 kinase, up-regulates (prepro)insulin gene
transcription, which contributes to increased translation.
Given the unique role of insulin as the sole blood glucose-

decreasing peptide hormone, it is unclear whether positive auto-
crine secretion–biosynthesis coupling is a unique phenomenon
rather than a more generally used mechanism. We tested the more
general role of an autocrine secretion–biosynthesis coupling using
glucagon as an example. Glucagon is one of several peptide hor-
mones that increase blood glucose levels. We show that glucagon,
secreted by pancreatic α cells, up-regulates the expression of its
own gene by signaling through the glucagon receptor, PKC, and
PKA, supporting a more generalized applicability of an autocrine
feedback mechanism in the regulation of peptide hormone
synthesis.

Results and Discussion
Secreted Glucagon Up-Regulates Transcription of Its Own Gene and
Renewed Synthesis of Glucagon. To test whether at all glucagon is
able to up-regulate the expression of its own gene, we first stim-
ulated mouse and human islets, as well as clonal glucagon-pro-
ducing αTC1-9 cells, with exogenous glucagon at a glucose
concentration that does not trigger glucagon exocytosis and then

analyzed (prepro)glucagon mRNA levels. Stimulation of mouse
and human islets for 15 min with 200 nM glucagon led to a
greater than threefold increase in (prepro)glucagon mRNA levels
by 60 min after the start of stimulation (Fig. 1A). Similarly, a two-
fold increase in (prepro)glucagon mRNA levels was observed in
αTC1-9 cells stimulated with exogenously applied glucagon (Fig.
1C). The increase in (prepro)glucagon mRNA levels was only
transient, however, and began to decline at 90 min after the start
of stimulation in islets and by 120 min after the start of stimu-
lation in αTC1-9 cells (Fig. 1 B and C).
To analyze the mechanisms underlying this positive feedback

action in more detail, we performed a reporter gene assay in which
expression of the red fluorescent protein DsRed2 was con-
trolled by the rat glucagon promoter (−776/+7 bp). This allowed
the analysis of stimulus-induced glucagon promoter activity in
living α cells at the single-cell level. Similar to the dynamics de-
scribed for insulin promoter-driven or c-fos promoter-driven
DsRed2 expression/fluorescence in insulin-producing cells (12, 13),
DsRed2 fluorescence in glucagon-producing αTC1-9 cells began
to increase by 60 min after the start of glucagon stimulation
for 15 min and continued to increase up to 240 min (Fig. 1D).
The delayed onset of fluorescence increase is related to the
time required for protein synthesis of DsRed2 and its maturation
into a fluorophore (Fig. S1A). The increase in fluorescence
plateaus at 260 min, reflecting a decrease in glucagon promoter
activity. A decline in fluorescence does not occur, owing to the long
half-life of the fluorescent protein. In contrast to the glucagon
promoter-driven expression, no increase in DsRed2 fluorescence
was observed in control cells transfected with a cytomegalovirus
(CMV) promoter-driven construct. Testing different concen-
trations of exogenously applied glucagon showed that stimula-
tion with 100 pM glucagon for 15 min allowed maximal
activation of the reporter gene (Fig. 1E).
We next tested whether secretion of the hormone leads to up-

regulation of glucagon promoter activity. Glucagon-producing
αTC1-9 cells secrete glucagon at glucose concentrations below
5 mM (14) (Fig. S1B). Glucagon promoter activity was elevated
under conditions that stimulated glucagon secretion (Fig. S1C).
Combining glucose-evoked glucagon secretion with immuno-
absorption of secreted glucagon by anti-glucagon antibodies
prevented the increase in glucagon promoter-driven DsRed2
expression, whereas application of a control IgG had no in-
hibitory effect (Fig. 1F). Finally, we studied whether the positive
feedback action of glucagon would lead to an increase in glucagon
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biosynthesis. Stimulation of αTC1-9 cells with either 1 mM glucose
(which triggers secretion of glucagon) or exogenously applied
glucagon (200 nM for 15 min) led to a 30% increase in glucagon
biosynthesis within 60 min after the start of stimulation (Fig. 1G).

Glucagon-Stimulated (Prepro)Glucagon Gene Transcription Requires
Signal Transduction via Glucagon Receptor, PKC, and PKA. Recent
studies have characterized the expression and functionality of
glucagon receptors in pancreatic α cells (15–17). Our data from
Western blot (Fig. 2A) and immunohistochemistry analyses (Fig.
2B) confirm the presence of glucagon receptors in α cells in mouse
and human pancreatic islets, as well as in glucagon-producing
αTC1-9 cells. We next studied whether signal transduction through
the glucagon receptor is required to elevate (prepro)glucagon
mRNA levels by glucagon. Whereas stimulation with exogenous
glucagon (200 nM for 15 min) led to an increase in mRNA levels
in αTC1-9 cells and pancreatic islets, the stimulatory effect of
glucagon on the transcription of its own gene was abolished
when cells or islets were treated with 400 nM glucagon receptor

antagonist II (GRA II) (Fig. 2 C and D). Similarly, treatment
with GRA II abolished the stimulatory effect of exogenous glu-
cagon (Fig. 2E), as well as that of secreted glucagon after stimu-
lation with 1 mM glucose (Fig. 2F), on glucagon promoter activity.
Finally, pretreatment of αTC1-9 cells with 1 μM [des-His1, Glu9]
glucagon amide, a glucagon analog that binds to but does not
activate the glucagon receptor, abolished glucagon-stimulated
activation of the glucagon promoter (Fig. 2G).
Signaling cascades that can be triggered by the glucagon re-

ceptor activate PKA via the adenylate cyclase system and activate
PKC via the phospholipase C system (18, 19). We next analyzed
whether exogenously applied or secreted glucagon activates either
PKA or PKC. Stimulation with either exogenous glucagon (200 nM
for up to 15 min) or secreted glucagon at low glucose concentration
(1 mM glucose for up to 15 min) led to a more than twofold ele-
vation in PKA activity (Fig. 3A) and to a more than threefold in-
crease in PKC activity (Fig. 3B). Of note, the increased activity of
both kinases was transient, and activity returned to basal levels
by 30 min after the start of stimulation. To test whether signaling
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Fig. 1. Secreted or exogenously added glucagon stimulates (prepro)glucagon gene transcription and glucagon biosynthesis. (A) (Prepro)glucagon mRNA
levels in cultured human and mouse islets at 60 min after the start of stimulation with exogenously added glucagon (200 nM for 15 min). (Prepro)glucagon
mRNA levels represent the percentage of mRNA levels of nonstimulated control (given as 100%); n = 5. Data are expressed as mean ± SEM. *P < 0.05;
**P < 0.01. (B and C) (Prepro)glucagon mRNA levels in cultured mouse islets (B) and clonal αTC1-9 cells (C) at indicated time points after the start of stim-
ulation with exogenously added glucagon (200 nM for 15 min). (Prepro)glucagon mRNA levels represent the percentage of mRNA levels of nonstimulated
control (given as 100%); n = 3. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001. (D and E) Online monitoring of glucagon promoter-
driven DsRed2 expression in transfected αTC1-9 cells. (E) Effects of different amounts of exogenously added glucagon on glucagon promoter-driven and
CMV promoter-driven DsRed2 expression. Data represent the ratio of DsRed2 fluorescence values obtained at 240 min and 60 min, expressed as mean ± SEM
for at least 15 monitored cells. *P < 0.05; **P < 0.01. (F) Effect of immunoabsorption of secreted glucagon on glucagon promoter-driven DsRed2 expression
in transfected αTC1-9 cells. Shown are the effects of glucose at 16.7 mM (1) and 1 mM (2) without immunoabsorption; effects of immunoabsortion with anti-
glucagon antibodies at 1 mM glucose (3) and 16.7 mM glucose (4); and effect of control IgG at 1 mM glucose (5). Data represent the ratio of DsRed2
fluorescence values obtained at 240 min and 60 min and are expressed as mean ± SEM for at least 15 monitored cells. (2–5) Significance vs. (1): **P < 0.01.
ns: not significant. (3–5) Significance vs. (2): #P < 0.01. ns: not significant. (G) Effects of exogenously added or secreted glucagon on glucagon biosynthesis.
αTC1-9 cells were incubated at 16.7 mM glucose without stimulation (1) or stimulated with either 200 nM exogenous glucagon at 16.7 mM glucose (2) or 1 mM
glucose (3) for 15 min, and glucagon biosynthesis was analyzed by incorporation of 3H-labeled leucine for 60 min. Data are expressed as mean ± SEM for five
independent experiments. **P < 0.01.
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through either PKA or PKC is involved in glucagon-stimulated
(prepro)glucagon gene transcription, we used Rp-cAMPS and
bisindolylmaleimide-I (BIM) as pharmacologic inhibitors of PKA
and PKC, respectively. Treatment of αTC1-9 cells with either
100 μM Rp-cAMPS or 150 nM BIM abolished the glucagon-
stimulated increase in (prepro)glucagon mRNA levels (Fig. 3C),
as well as glucagon promoter activity (Fig. 3D). Finally, treat-
ment of mouse and human pancreatic islets with either inhibitor
drastically reduced the stimulatory effect of exogenous glucagon
on the transcription of its own gene (Fig. 3E).

Glucagon-Stimulated Glucagon Gene Transcription Is Mediated via
cAMP-Element Binding Protein. The promoter of the (prepro)glu-
cagon gene is well characterized, and cis- and transacting factors
that contribute to transcriptional control have been identified
(20). Among these transcription factors, the prime candidates
for glucagon-stimulated transcriptional control are the cAMP-
response element (CRE) (21) and the respective CRE-binding
protein (CREB), which generally can be activated by PKA and
PKC (22, 23). CREB has been shown to be activated in response
to glucagon stimulation in hepatocytes and pancreatic β cells
(24, 25). To test whether the positive autocrine feedback action

by glucagon on the transcription of its own gene involves CREB,
we mutated the CREB binding site in the glucagon promoter of our
reporter construct. Mutating the CRE motif from TGACGTCA to
TGTGGTCA (CRE-mut; Fig. 4A) abolished binding of CREB to
respective ds oligonucleotide probes in electrophoretic mobility shift
assays (Fig. 4B). The CREB/ds oligonucleotide complex (com-
plex 1) was identified by “supershifting” this complex in response
to incubation with an anti-CREB antibody, which resulted in
the formation of complex 2 (Fig. 4B). Introduction of the same
mutation into the CRE motif of our reporter construct reduced
basal glucagon promoter activity (Fig. 4C), and also abolished the
stimulatory effect of secreted glucagon (Fig. 4D) and exogenously
applied glucagon (Fig. 4E) on glucagon promoter-driven DsRed2
expression/fluorescence.

Conclusion
Positive autocrine feedback leading to a secretion-biosynthesis
coupling, which allows replenishment of the peptide hormone stores
of the hormone-producing cell, is not a widely accepted concept.
Such a feedback mechanism has been reported for the peptide
hormones insulin (1–11) and gastrin (26), as well as for the cytokines
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values obtained at 240 min and 60 min and are expressed as mean ± SEM for at least 15 monitored cells.
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IL-1 (27), IL-21 (28), and erythropoietin (29); growth factors HGF,
KGF, and kit (30); and the vasoconstrictor endothelin (31, 32).
Our data demonstrate that secreted glucagon stimulates its own

resynthesis via a positive autocrine feedback mechanism. The in-
crease in (prepro)glucagon mRNA levels is only transient, how-
ever, and the feedback loop is turned off by a lack of glucagon
stimulus, leading to transient activation of protein kinases PKA
and PKC in response to rising blood glucose levels, as well as to
inhibition of glucagon gene transcription by insulin (33). In-
terestingly, GLP-1, another product of the (prepro)glucagon gene
that is synthesized and secreted by intestinal L cells, is also able
to activate the glucagon promoter in αTC1-9 cells (Fig. S2).
Although the presence of all involved players in pancreatic α cells

has been documented in earlier studies—that is, the presence in
α cells of glucagon receptor (15–17) and the roles of CRE and
CREB (21, 34, 35) and of cAMP, PKC, and PKA (35–38) in
(prepro)glucagon gene expression—their involvement in glucagon-
stimulated (prepro)glucagon gene expression had not been studied
previously. There may be two major reasons for this. First, a mouse
model with a general knockout of the glucagon receptor showed an
increase in circulation glucagon levels as well as increased pancre-
atic glucagon content (39). However, it should be stressed that
under conditions of “global glucagon resistance,” the increased
demand for glucagon is compensated for by an increase in α cell
mass, as well as glucagon biosynthesis. The involved signaling
mechanisms “override” regulatory circuits that function under
physiological conditions. The fact that signaling and function of
α cells under these conditions is not physiological is underscored
by the finding that the α cells in this mouse model show an im-
mature phenotype expressing genes normally repressed in mature
α cells, such as genes encoding GLUT2 or Pdx1 (40). A second
reason for the lack of previous studies may be the “textbook

wisdom” suggesting that the existence of a positive autocrine
feedback mechanism for peptide hormone biosynthesis is coun-
terintuitive, because elevated/continuous exposure to a peptide
hormone leads to desensitization to the hormone at the effector
cell level, and, consequently, cells that produce and secrete a
peptide hormone should be desensitized to the hormone because
of its continuous presence. However, it should be kept in mind
that a broad spectrum of fuel-regulating hormones, including
insulin and glucagon, are secreted in a pulsatile manner (41, 42).
Along with being sensed more potently by peripheral target
cells, pulsatility also provides an off state of ligand presence
for the hormone-secreting cells themselves, thereby allowing
hormone sensing.
Although our data indicate the contribution of CREB to the

glucagon autocrine feedback mechanism, we do not exclude
the possible involvement of other transcription factors that can
be activated by PKA and PKC. Moreover, given that synthesis
of peptide hormones must be coupled to the highly complex
regulated biosynthesis of secretory granules, as for insulin (43),
we do not exclude the possible existence of further retrograde
signaling mechanisms.
In conclusion, together with previously published data on in-

sulin and gastrin feedback, the present data on glucagon support
the concept of positive autocrine feedback action as a more
general mechanism involved in the secretion–biosynthesis coupling
of peptide hormones.

Materials and Methods
Pancreatic islets were prepared from 4-mo-old BALB/C mice using colla-
genase digestion as described previously (44). Human islets were provided by
O. Korsgren (Department of Oncology, Radiology, and Clinical Immunology,
Uppsala University Hospital, Uppsala, Sweden) via the Nordic Islet Network.
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The glucagon promoter (−773/+35 bp) was amplified by PCR from genomic
rat DNA using 5′-TCCTTCTGTTGAATGGCCAG-3′ as the upstream primer and
5′-TTTGAGTGTGTTCTGCGCC-3′ as the downstream primer. Total RNA was
purified from 20 islets using the RNeasy Micro Kit (Qiagen) according to the
manufacturer’s instructions. Reverse-transcription reactions were performed
using the SuperScriptIII Kit (Invitrogen).

(Prepro)glucagon mRNA levels were determined by real-time PCR. Taqman
reactions were carried out following the manufacturer’s instructions for
Taqman gene expression assays (Applied Biosystems). Relative quantifica-
tion of glucagon mRNA expression was calculated by the comparative Ct

method (45) using peptidylpropyl isomerase A as an internal reference.
Glucagon secretion was measured using the LINCO glucagon RIA kit (Millipore).
Total protein content of the cell lysate, determined by the Bradford assay,
was used to normalize for between well variations in cell density. Glucagon
biosynthesis was analyzed by using L-[4,5- 3H] leucine (PerkinElmer) for
labeling and a sheep polyclonal antibody directed toward the C terminus of
glucagon (ab36215; Abcam) for immunoprecipitation. Nuclear extracts from
αTC1-9 cells for EMSA were prepared as described previously (46). Supershift
assays were performed using a CREB-antibody (Abcam). The following
inhibitors were used: PKA inhibitor Rp-cAMPS, PKC inhibitor BIM I, glucagon
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Fig. 4. Glucagon-stimulated (prepro)glucagon gene transcription is mediated via CREB and the CRE motif in the (prepro)glucagon promoter. (A and B) CREB
binds in electrophoretic mobility shift assays to ds oligonucleotides containing an intact CRE motif (CRE), but not to ds oligonucleotides containing a mutated
CRE (CRE-mut). The normal ds oligonucleotide/CREB complex 1 (B, lanes 2, 4, and 6) is “supershifted” and forms complex 2 after incubation with an anti-
CREB antibody (B, lane 5). (C–E) Effect of CRE-mut on basal (C) or stimulated (prepro)glucagon promoter activity by secreted (D) or exogenous (E) glucagon.
In C, αTC1-9 cells were cotransfected with pGL4.CMV.hRlucCP and either WT pGlcg1.luc2neo (CRE) or mutant pGlcg1.CRE-mut.luc2neo (CRE-mut). Basal
promoter activity was analyzed as described in Materials and Methods and calculated by dividing Glcg1.CRE or Glcg1.CRE-mut promoter-controlled firefly
luciferase luminescence by CMV promoter-controlled Renilla luciferase luminescence. Glucagon promoter activity is presented as percentage of WT promoter
activity (given as 100%); n = 3. Data are expressed as mean ± SEM; *P < 0.05. In D and E, αTC1-9 cells were transfected with either WT pGlcg1.DsRed2 (CRE)
or mutant pGlcg1.mut.DsRed2 (CRE-mut). Cells were left unstimulated or were stimulated with either 1 mM glucose (D) or 200 nM glucagon (at 16.7 mM
glucose) (E) for 15 min. Data represent the ratio of DsRed2 fluorescence values obtained at 240 min and 60 min and are expressed as mean ± SEM for at least
15 monitored cells. Significance vs. stimulated expression of CRE, *P < 0.05.

Leibiger et al. PNAS | December 18, 2012 | vol. 109 | no. 51 | 20929

CE
LL

BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
26

, 2
02

1 



www.manaraa.com

receptor antagonist II (all Calbiochem/Merck), and the glucagon receptor
inhibitory peptide [Des-His1,Glu9] glucagon amide (sequence: Ser-Gln-Gly-
Thr-Phe-Thr-Ser-Glu-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-
Gln-Trp-Leu-Met-Asn-Thr-NH2) (American Peptide). The experiments are
described in more detail in SI Materials and Methods.
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